Cross sections for rotational decoherence of perturbed nitrogen measured via decay of laser-induced alignment.

نویسندگان

  • N Owschimikow
  • F Königsmann
  • J Maurer
  • P Giese
  • A Ott
  • B Schmidt
  • N Schwentner
چکیده

We quantitatively determine cross sections for rotational decoherence from the decay of nonadiabatic laser-induced alignment in nitrogen and nitrogen-foreign gas mixtures in a temperature range between 80 K and room temperature. The cross section for rotational decoherence in pure nitrogen decreases from 102 A(2) at 80 K to 48 A(2) at 295 K, leading to long-lived coherences even at high temperatures. Comparison with the broadening of the transition lines of the Raman Q-branch reported in the literature shows that the decay of rotational coherence proceeds at the same rate as rotational depopulation. This is verified also for mixtures of nitrogen with hydrogen, helium, argon, and krypton. We discuss limits posed by a possible J-dependence of the cross sections and strategies for state resolved determination from the time-dependent alignment signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing nonadiabatic molecular alignment by spectral modulation.

We investigated molecular alignment wakes of femtosecond laser pulses. Evolution of nonadiabatic molecular alignment in nitrogen gas has been measured via its nonlinear interaction effects with a variably delayed probe pulse. The induced rotational wave packet was mapped as a function of the angular difference between polarization directions of femtosecond pump and probe pulses as well as their...

متن کامل

Intense laser alignment in dissipative media as a route to solvent dynamics.

We extend the concept of alignment by short intense pulses to dissipative environments within a density matrix formalism and illustrate the application of this method as a probe of the dissipative properties of dense media. In particular, we propose a means of disentangling rotational population relaxation from decoherence effects via strong laser alignment. We illustrate also the possibility o...

متن کامل

Molecular beam scattering of NO+Ne: a joint theoretical and experimental study.

The collision dynamics of the NO+Ne system is investigated in a molecular beam scattering experiment at a collision energy of 1055 cm(-1). Employing resonance enhanced multiphoton ionization of NO, we measured state-resolved integral and differential cross sections for the excitation to various levels of both spin-orbit manifolds. The dependence of the scattered intensity on the laser polarizat...

متن کامل

Decoherence effects on quantum Fisher information of multi-qubit W states

Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...

متن کامل

Damped oscillations in the energy autocorrelation functions of the 58 Ni + 46 Ti elastic and 58 Ni + 62 Ni elastic and inelastic scattering cross sections

Structures of non-statistical character, recently observed in 58Ni +46 Ti elastic and 58Ni +62 Ni elastic and inelastic excitation functions, produce damped oscillations in the cross section energy autocorrelation functions. The analysis of these damped oscillations in terms of S-matrix spin and parity decoherence indicates, as a possible interpretation, damping of the coherent rotational motio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2010